From d2cc765ed1a80a0ef58ef74fcb5d434b83f82a84 Mon Sep 17 00:00:00 2001 From: Matan Horovitz Date: Mon, 6 Mar 2023 15:15:02 +0200 Subject: [PATCH] Digging into question 3 --- R_Final_Tasks_Statistics.R | 44 ++++++++++++++++++++++++++++++-------- 1 file changed, 35 insertions(+), 9 deletions(-) diff --git a/R_Final_Tasks_Statistics.R b/R_Final_Tasks_Statistics.R index d3db9d9..4112e1d 100755 --- a/R_Final_Tasks_Statistics.R +++ b/R_Final_Tasks_Statistics.R @@ -8,27 +8,39 @@ chip <- read.csv("/home/shmick/Downloads/chip_dataset.csv") ##BONUS: convert from EPOCH: as.Date(as.POSIXct(1100171890,origin = "1970-01-01")) #View(chip) ##For question 1, we have chosen to examine which type of chip has examined the greater improvement over the years - GPU chips or CPU chips. -#+As chip perfomance is most directly correlated with the number of transistors, we have measured the pace of development based on pace of +#+As chip performance is most directly correlated with the number of transistors, we have measured the pace of development based on pace of #+increasing transistor count. CPU <- chip[chip$Type == 'CPU',] CPU <- subset(CPU, select= c(Product,Type,Release.Date,Process.Size..nm.,TDP..W.,Die.Size..mm.2.,Transistors..million.,Freq..MHz.)) GPU <- chip[chip$Type == 'GPU',] GPU <- subset(GPU, select= c(Product,Type,Release.Date,Process.Size..nm.,TDP..W.,Die.Size..mm.2.,Transistors..million.,Freq..MHz.)) #Calculate a crude 'performance factor' - the number of transistors multiplied by their frequency. -CPU["Performance Factor"] <- CPU$Transistors..million.*CPU$Freq..MHz. -GPU["Performance Factor"] <- GPU$Transistors..million.*GPU$Freq..MHz. -View(CPU) -View(GPU) +#CPU["Performance Factor"]) #Range of total transistor advancement max(CPU$Transistors..million.,na.rm=TRUE) - min(CPU$Transistors..million.,na.rm=TRUE) max(GPU$Transistors..million.,na.rm=TRUE) - min(GPU$Transistors..million.,na.rm=TRUE) #Omit chips with missing data -CPU <- na.omit(CPU) -GPU <- na.omit(GPU) +#CPU <- na.omit(CPU) +#GPU <- na.omit(GPU) ##Iterate over date entries #for (i in 1:length(CPU$Release.Date)){print(i)} ##Get date -#for (i in 1:length(CPU$Release.Date)){print(CPU$Release.Date[i])} +##Install the 'lubridate' package to deal with conversion to EPOCH time +#install.packages('lubridate') +#library(lubridate) +#dates <- strptime(CPU$Release.Date,format="%Y-%m-%d") +#as.integer(as.POSIXct(CPU$Release.Date)) +#posix_format_date <- c() +#or (date in 1:length(CPU$Release.Date)){ +# cat("Date is", date) +# human_format_date <- CPU$Release.Date[date] +# print(human_format_date) +# posix_format_date[date] <- strptime(human_format_date,format="%Y-%m-%d") +#} +#for (i in CPU$Release.Date){ +# print(i) +#} + ##QUESTION 2: measure number of columns in our dataset and calculate a permutation and combination of #+that number, minus two, and 3. @@ -37,4 +49,18 @@ GPU <- na.omit(GPU) #n <- ncol(kernel_commits) #View(n) -##QUESTION 3: pick two categorcial variables - month (?), is documentation \ No newline at end of file +##QUESTION 3: pick two categorcial variables (Chip type, foundry) and see whether they're dependent +#+1. Probablity of chip type +#+2. Probability of foundry +#+3. Multiplty + +#Sample 1 variable from 'Type' column +chip_type_sample <- sample(chip$Type,1) +#Count how many times it appears in it's column +p_chip_type_sample <- (length(which(chip$Type==chip_type_sample)))/length(chip$Type) +chip_foundry_sample <- sample (chip$Foundry,1) +p_chip_foundry_sample <- (length(which(chip$Foundry==chip_foundry_sample)))/length(chip$Foundry) +chip_type_sample_matrix <- chip[chip$Type == chip_type_sample,] +p_chip_type_foundry_sample <- (length(which(chip_type_sample_matrix$Foundry==chip_foundry_sample)))/length(chip_type_sample_matrix$Foundry) +#p_victim_bastard <- p_neo_bastard * nrow(CPU ) +p_chip_type_foundry_sample * p_chip_type_sample \ No newline at end of file