##Final R assignment in Intro to Statistics course, fall semster. #+Written by Matan Horovitz (207130253) and Guy Amzaleg () #+We have chosen a dataset of CPU and GPU performance trends since 2000 - as published on Kaggle: #+https://www.kaggle.com/datasets/michaelbryantds/cpu-and-gpu-product-data chip <- read.csv("/home/shmick/Downloads/chip_dataset.csv") #chip <- na.omit(chip) ##BONUS: convert from EPOCH: as.Date(as.POSIXct(1100171890,origin = "1970-01-01")) #View(chip) ##For question 1, we have chosen to examine which type of chip has examined the greater improvement over the years - GPU chips or CPU chips. #+As chip perfomance is most directly correlated with the number of transistors, we have measured the pace of development based on pace of #+increasing transistor count. CPU <- chip[chip$Type == 'CPU',] CPU <- subset(CPU, select= c(Product,Type,Release.Date,Process.Size..nm.,TDP..W.,Die.Size..mm.2.,Transistors..million.,Freq..MHz.)) GPU <- chip[chip$Type == 'GPU',] GPU <- subset(GPU, select= c(Product,Type,Release.Date,Process.Size..nm.,TDP..W.,Die.Size..mm.2.,Transistors..million.,Freq..MHz.)) #Calculate a crude 'performance factor' - the number of transistors multiplied by their frequency. CPU["Performance Factor"] <- CPU$Transistors..million.*CPU$Freq..MHz. GPU["Performance Factor"] <- GPU$Transistors..million.*GPU$Freq..MHz. View(CPU) View(GPU) #Range of total transistor advancement max(CPU$Transistors..million.,na.rm=TRUE) - min(CPU$Transistors..million.,na.rm=TRUE) max(GPU$Transistors..million.,na.rm=TRUE) - min(GPU$Transistors..million.,na.rm=TRUE) #Omit chips with missing data CPU <- na.omit(CPU) GPU <- na.omit(GPU) ##Iterate over date entries #for (i in 1:length(CPU$Release.Date)){print(i)} ##Get date #for (i in 1:length(CPU$Release.Date)){print(CPU$Release.Date[i])} ##QUESTION 2: measure number of columns in our dataset and calculate a permutation and combination of #+that number, minus two, and 3. #Calculate total number of columns in our dataset #n <- ncol(kernel_commits) #View(n) ##QUESTION 3: pick two categorcial variables - month (?), is documentation