

4

הרעיון הבסיסיטבלאות אמת הן כלי לא מאד יעיל אנחנו מפרטים את <u>כל</u> המקרים האפשריים בעוד ש<u>רק</u> המקרים בהם <u>כל</u> ההנחות אמיתיות מעניינים אותנו.

We start with a few argument forms, which we know are valid, and we use these to demonstrate that other argument forms are valid.

We demonstrate (show) that a given argument form is valid by deriving (deducing) its conclusion from its premises using a few fundamental modes of reasoning.

3

5

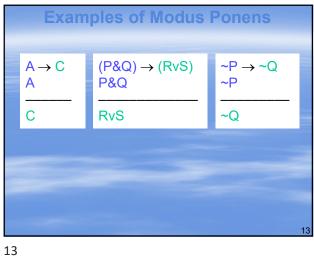
Example 1 – Modus Ponens (MP) $A \rightarrow C$ if A then C Α Α С С a derivative argument form $P \rightarrow Q$ $Q \rightarrow R$ we can employ modus ponens (MP) $R \rightarrow S$ to derive the conclusion from S the premises.

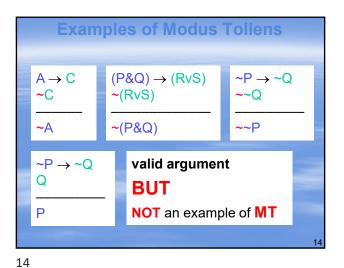
Example 1 (continued)

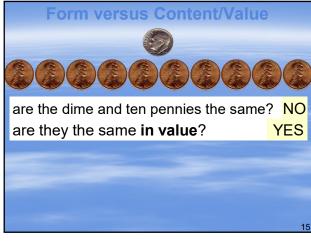
P;P→Q;Q→R;R→S/S

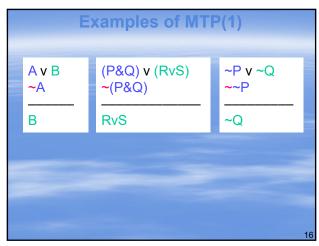
Q
MP
R
MP
S
6

Derivations – How to Start			
argument : P; $P \rightarrow Q$; $Q \rightarrow R$; $R \rightarrow S / S$			
write down premises			
2.	write down "SHO	W:" conclusion	
(1)	Р	Pr(emise)	
(2)	$P \rightarrow Q$	Pr	
(3)	$Q \rightarrow R$	Pr	
(4)	$R \rightarrow S$	Pr	
(5)	SHOW: S	(the goal)	

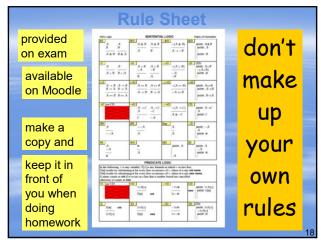

	Der	ivations - How to C	onti	nue	
3. apply rules, as appropriate, to available lines until goal is reached					
	(1)	Р	Pr		
	(2)	$P \rightarrow Q$	Pr		
	(3)	$Q \rightarrow R$	Pr		
	(4)	$R \rightarrow S$	Pr		
	(5)	SHOW: S	(goa	I)	
	(6)	Q	1,2,	MP	\leftarrow
	(7)	R	3,6,	MP	
	(8)	S	4,7,	MP	
	follo	ws from lines 1 and 2 by mod	lus po	nens	8

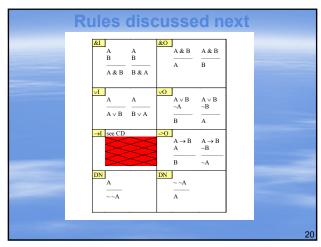

4.	Box and Car			···
(1)	Р		Pr	
(2)	$P \rightarrow Q$		Pr	
(3)	$Q \rightarrow R$		Pr	
(4)	$R \rightarrow S$		Pr	
(5)	SHOW: S		DD	
(6)	Q		1,2,	MP
(7)	R		3,6,	MP
(8)	S		4,7,	MP
	DD = Dire	ect Derivation		


Example 2						
	~S; $R \rightarrow S$; $Q \rightarrow R$; $P \rightarrow Q$; / ~P					
	(4)		_			
	(1)	~S	Pr			
	(2)	$R \rightarrow S$	Pr			
	(3)	$Q \rightarrow R$	Pr			
	(4)	$P \rightarrow Q$	Pr			
	(5)	SHOW: ~P	DD			
	(6)	~R	1,2,	MT		
	(7)	~Q	3,6,	MT		
	(8)	~P	4,7,	MT		
					10	


Example 3						
~S; R→S; ~R→~T; P→T; ~P→~Q / ~Q						
(1)	~S	Pr				
(2)	$R \rightarrow S$	Pr				
(3)	\sim R \rightarrow \sim T	Pr				
(4)	$P \rightarrow T$	Pr				
(5)	$\sim P \rightarrow \sim Q$	Pr				
(6)	SHOW: ~Q	DD				
(7)	~R	1,2,	MT			
(8)	~T	3,7,	MP			
(9)	~P	4,8,	MT			
(10)	~Q	5,9,	MP	11		

Initial Inference Rules			
Modus Tollens			
A → C ~C ~A			
Modus Tollendo Ponens (2)			
A v B ~B ——— A			




Examples of MTP(2)			
A v B ~B	(P&Q) v (RvS) ~(RvS)	~P v ~Q ~~Q	
A	P&Q	~P	

Rules of Inference – Basic Idea

(almost) every connective has an

Nouther the bound of the boun

19 20

Ampersand-Out (&O)

if you have a conjunction then you are entitled to inferits first conjunct

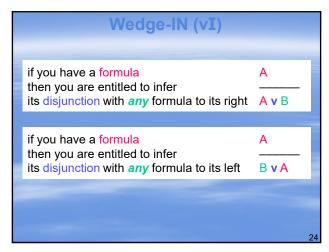
if you have a conjunction then you are entitled to inferits second conjunct

'have' means 'have as a whole line'

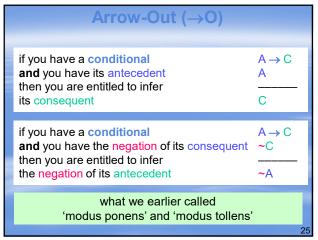
rules apply only to whole lines not pieces of lines

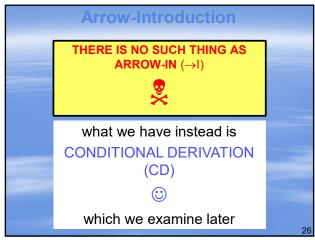
Ampersand-IN (&I)

if you have a formula
and you have a formula
then you are entitled to infer
their (first) conjunction

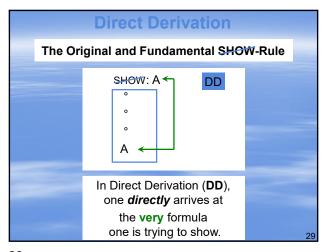

A & B

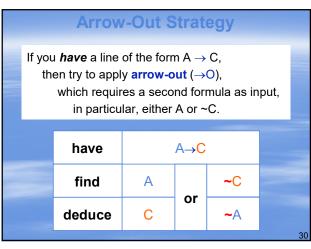
if you have a formula
and you have a formula
then you are entitled to infer
their (second) conjunction


B & A


21 22

Wedge-Out (vO) if you have a disjunction A v Band you have the negation of its 1st disjunct ~A then you are entitled to infer В its second disjunct if you have a disjunction A v B and you have the negation of its 2nd disjunct ~B then you are entitled to infer its first disjunct Α what we earlier called 'modus tollendo ponens'


23 24



25

Double-Negation (DN) if you have a formula then you are entitled to infer its double-negative ~~A if you have a double-negative ~~A then you are entitled to infer the formula Α rules apply only to whole lines not pieces of lines

29 27

