	Logio								taice of Borranerr
&I	$\begin{array}{c} \mathcal{A} \\ \mathcal{B} \\ \hline \mathcal{A} \& \mathcal{B} \end{array}$	$\frac{\mathcal{A}}{\mathcal{B}}$ $\frac{\mathcal{B}}{\mathcal{B} \& \mathcal{A}}$	<u>&O</u>	A & B ———————————————————————————————————	$\frac{\mathcal{A} \& \mathcal{B}}{\mathcal{B}}$	~&O	$\frac{\sim (\mathcal{A} \& \mathcal{B})}{\mathcal{A} \to \sim \mathcal{B}}$	&D	SHOW: $\mathcal{A}\&\mathcal{B}$ SHOW: \mathcal{A} SHOW: \mathcal{B}
√I	$\frac{\mathcal{A}}{\mathcal{A}\vee\mathcal{B}}$	$\frac{\mathcal{A}}{\mathcal{B} \vee \mathcal{A}}$	∨O	$\begin{array}{c} \mathcal{A} \vee \mathcal{B} \\ \sim \mathcal{A} \\ \hline \mathcal{B} \end{array}$	$\begin{array}{c} \mathcal{A} \vee \mathcal{B} \\ \sim \mathcal{B} \\ \hline \mathcal{A} \end{array}$	~∨0	$ \frac{\sim (\mathcal{A} \vee \mathcal{B})}{\sim \mathcal{A}} \\ \sim \mathcal{B} $	∨D	$\begin{array}{l} \text{(ID)} \\ \text{SHOW: } \mathcal{A} \vee \mathcal{B} \\ \sim (\mathcal{A} \vee \mathcal{B}) \\ \text{SHOW: } \% \\ \end{array}$
↔I	$ \begin{array}{c} \mathcal{A} \to \mathcal{B} \\ \mathcal{B} \to \mathcal{A} \\ \hline \end{array} $	$\frac{\mathcal{A} \to \mathcal{B}}{\mathcal{B} \to \mathcal{A}}$ $\frac{\mathcal{B} \to \mathcal{A}}{\mathcal{B} \leftrightarrow \mathcal{A}}$	↔ 0		$\frac{\mathcal{A} \leftrightarrow \mathcal{B}}{\mathcal{B} \to \mathcal{A}}$	<u>~</u> ↔0	$\frac{\sim (\mathcal{A} \leftrightarrow \mathcal{B})}{\sim \mathcal{A} \leftrightarrow \mathcal{B}}$	↔ D	SHOW: $\mathcal{A} \leftrightarrow \mathcal{B}$ SHOW: $\mathcal{A} \rightarrow \mathcal{B}$ SHOW: $\mathcal{B} \rightarrow \mathcal{A}$
→I	see CD		→0	$ \begin{array}{c} \mathcal{A} \to C \\ \mathcal{A} \\ \hline C \end{array} $	$ \begin{array}{c} \mathcal{A} \to C \\ \sim C \\ \hline \sim \mathcal{A} \end{array} $	~→0	$\frac{\sim (\mathcal{A} \to C)}{\mathcal{A} \& \sim C}$	CD	SHOW: A→C A SHOW: C
DN	<i>A</i> ~~A		DN	~~A ———————————————————————————————————		Rep	Д — Д	~D	SHOW: ~A A SHOW: **
<u> </u>	<i>A</i> ∼ <i>A</i> ×		* 0	*		DD	SHOW: A A	ID	SHOW: A ~ A SHOW: **

PREDICATE LOGIC

In the following, v is any variable; $\mathbb{F}[v]$ is any formula in which v occurs free; $\mathbb{F}[\mathbf{o}]$ results by substituting \mathbf{o} for every free occurrence of v, where \mathbf{o} is any **old name**. $\mathbb{F}[\mathbf{n}]$ results by substituting \mathbf{n} for every free occurrence of v, where \mathbf{n} is any \mathbf{new} name.

A name counts as **old** if it occurs in a line that is neither boxed nor cancelled;

otherwise it counts as new

otherwise it counts as new.									
∀I see UD	AO			$\sim \forall O$		UD			
		$\forall \nu \mathbb{F}[\nu]$			$\sim \forall \nu \Phi$		SHOW: $\forall \nu \mathbb{F}[\nu]$		
						new	SHOW: F[n]		
		$\mathbb{F}[\mathbf{o}]$	old		$\exists \nu \sim \Phi$				
		T							
∃I	ЭО			~∃O		∃D	(ID)		
$\mathbb{F}[\mathbf{o}]$ old		$\exists v \mathbb{F}[v]$			$\sim \exists \nu \Phi$		SHOW: ∃vF[v]		
							$\sim \exists \nu \mathbb{F}[\nu]$		
$\exists v \mathbb{F}[v]$		$\mathbb{F}[n]$	new		$\forall \nu \sim \Phi$		SHOW: Ж		